Cooperative Games with Monte Carlo Tree Search

نویسنده

  • CheeChian Cheng
چکیده

Monte Carlo Tree Search approach with Pareto optimality and pocket algorithm is used to solve and optimize the multi-objective constraint-based staff scheduling problem. The proposed approach has a two-stage selection strategy and the experimental results show that the approach is able to produce solutions for cooperative games.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting Monte-Carlo Tree Search on a Normal Form Game: NoGo

We revisit Monte-Carlo Tree Search on a recent game, termed NoGo. Our goal is to check if known results in Computer-Go and various other games are general enough for being applied directly on a new game. We also test if the known limitations of Monte-Carlo Tree Search also hold in this case and which improvements of Monte-Carlo Tree Search are necessary for good performance and which have a min...

متن کامل

Enhancements for Multi-Player Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is becoming increasingly popular for playing multi-player games. In this paper we propose two enhancements for MCTS in multi-player games: (1) Progressive History and (2) Multi-Player Monte-Carlo Tree Search Solver (MP-MCTS-Solver). We analyze the performance of these enhancements in two different multi-player games: Focus and Chinese Checkers. Based on the experi...

متن کامل

Monte-Carlo Tree Search: A New Framework for Game AI

Classic approaches to game AI require either a high quality of domain knowledge, or a long time to generate effective AI behaviour. These two characteristics hamper the goal of establishing challenging game AI. In this paper, we put forward Monte-Carlo Tree Search as a novel, unified framework to game AI. In the framework, randomized explorations of the search space are used to predict the most...

متن کامل

Monte-Carlo Approximation of Temperature

Monte-Carlo tree search is a powerful paradigm for the game of Go. We propose to use Monte-Carlo tree search to approximate the temperature of a game, using the mean result of the playouts. Experimental results on the sum of five 7x7 Go games show that it improves much on a global search algorithm.

متن کامل

Game-Tree Search over High-Level Game States in RTS Games

From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we present an approach to deploy gametree search in RTS games by using game state abstraction. We propose a high-level abstract representation of the game state, that significantly reduces the branching factor when used for game-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015